Flexibility for changing operating conditions: When changing from direct operation at temperatures up to 240 °C to compound mode at 140 °C the dust load is increased 10 - 15 times! Even at dust loads above 500 g/Nm³ P84 material ensures maximum efficiency and keeps emission levels far beyond environmental standards. No CO shut-downs.

Secondary fuels require chemical resistant filter material: The use of alternative fuels can change the flue gas composition dramatically. P84 material can be used within a wide pH range of 2 - 12 making it the preferred material when flue gas conditions vary due to different fuels.

In summary P84 material offers:

• good chemical and mechanical stability
• high temperature resistance up to 260 °C
• suitability for high a/c ratios up to 1,5 m/min
• superior filtration efficiency

More successful installations under www.P84.com

Evonik Fibres GmbH
Werkstraße
3
4860
Lenzing
Austria
PHONE +43 7672 701-2891
FAX +43 7672 96862
www.P84.com

USA Office
Hopedale, Tammie Road, P.O.Box 128 / II
MA 01747
USA
PHONE +1 508 478-2414
FAX +1 508 478-3843

Cement plant Poland
Cement plant France
Cement plant Austria

Convincing facts - P84 references

Collection efficiency for cement plants.

Evonik, Power to create.
An increased pressure drop is not necessarily an indication of problems, but just a result of changing operating conditions than can be explained based on the flow characteristics of the fluid. The pressure drop across the bag filter media is a function of the differential pressure drop on the bag filter media. The pressure drop across the bag filter media is a function of the differential pressure drop on the bag filter media.

The pressure drop of the dust cake

Influence factors on the pressure drop across the dust cake are:

- Filter flow velocity at cloth rating and net fluid load.
- The pressure drop across the clean bag and filter fabric increases app. linear with the air velocity (linear flow characteristics).

In addition, higher air rates and higher dust load result in a faster build-up of the bag filter. This has to be compensated by more frequent dusting or a higher operating pressure drop.

- Pressure on the use of finer and higher efficiency modules will result in higher differential pressure due to a denser dust cake with finer particles.

- Grading aid influences the agglomeration behavior as well as variations in dust composition. Variations in grading of the grading aid may be reflected in variations of the pressure drop.

These parameters also influence the resistance of the particulate filter for the bag(s) unless the bag(s) are always fitted after cleaning and therefore the pressure drop of the filter after cleaning. If the increased pressure drop is in the result of changing operating conditions, recovery of the bag material and differential pressure drop after return to original operating parameters is possible. If the resistance of the media is increased by the dust cake alone, the pressure drop will also increase.

Increased differential pressure drop

Penetration through the bag material

If the operating parameters (air volume and net fluid load) and the bag construction are chosen properly, the bag should be capable of handling the air flow and the dust load without any problems. Several factors influence the pressure drop across the bag filter media. If a material is not chosen properly, the bag filter media will have a higher pressure drop which may result in increased backwash or cleaning effort. The pressure drop of the dust cake is a function of the differential pressure drop on the bag filter media. The pressure drop across the bag filter media is a function of the differential pressure drop on the bag filter media.

Influence factors on the pressure drop across the bag filter media include:

- Following operation of the bag filter media may result in a higher pressure drop after cleaning.
- This may also be a result of too-night or short bag. This is a result of wrong bag material selection during cleaning, a mechanism that substantially contributes to the efficiency of a bag filter. If a bag filter media is exposed to high pressure drops, damage to the bag filter media is inevitable.
- Increased emissions

Symptoms of high temperature and smoke emissions can be very serious. It is not uncommon for the bag filter media to smoke if the temperature is too high. If the temperature is too high, the bag filter media will smoke. If the temperature is too high, the bag filter media will smoke.

- Nitrogen is added to the cleaning air to prevent backwash or cleaning effort during operating conditions. This is a result of wrong bag material selection during cleaning, a mechanism that substantially contributes to the efficiency of a bag filter. A bag filter media that is not chosen properly may result in increased backwash or cleaning effort.

- Nitrogen is added to the cleaning air to prevent backwash or cleaning effort during operating conditions. This is a result of wrong bag material selection during cleaning, a mechanism that substantially contributes to the efficiency of a bag filter. A bag filter media that is not chosen properly may result in increased backwash or cleaning effort.

- Increased emissions

Symptoms of high temperature and smoke emissions can be very serious. It is not uncommon for the bag filter media to smoke if the temperature is too high. If the temperature is too high, the bag filter media will smoke. If the temperature is too high, the bag filter media will smoke.

- Nitrogen is added to the cleaning air to prevent backwash or cleaning effort during operating conditions. This is a result of wrong bag material selection during cleaning, a mechanism that substantially contributes to the efficiency of a bag filter. A bag filter media that is not chosen properly may result in increased backwash or cleaning effort.

- Increased emissions

Symptoms of high temperature and smoke emissions can be very serious. It is not uncommon for the bag filter media to smoke if the temperature is too high. If the temperature is too high, the bag filter media will smoke. If the temperature is too high, the bag filter media will smoke.

- Nitrogen is added to the cleaning air to prevent backwash or cleaning effort during operating conditions. This is a result of wrong bag material selection during cleaning, a mechanism that substantially contributes to the efficiency of a bag filter. A bag filter media that is not chosen properly may result in increased backwash or cleaning effort.
Penetration through the bag material

If the operating parameters (vacuum, air pressure, and solids load) and the full construction of the bag is chosen properly, the developed air pressure should be sufficient to push the air to the filter surface, rendering a stable dust removal and preventing the stuff from depositing on the bag's surface.

Dust in the filter bag is removed by a vacuum system operating under a lower pressure than the air pressure inside the bag. This differential pressure causes the dust to be drawn through the bag fabric, carrying it to the dust collection system where it is collected and recycled.

This method is highly effective in preventing the accumulation of dust on the filter bag, ensuring a consistent airflow and efficient dust collection. It is widely used in environments where high dust concentrations are present, such as in industrial settings, mining, and construction sites.

In conclusion, the filter bag cleaning system is an essential component of dust collection systems, ensuring that the filter bags maintain their efficiency and longevity. Regular maintenance and proper operation are crucial for its optimal performance, ensuring a clean and safe working environment.
An increased pressure drop is not necessarily an indication of problems, but it must be studied carefully to determine whether or not a problem exists. In general, a pressure drop that is too low indicates either insufficient flow or that the bag filter is plugged.

The pressure drop of the dust cake

Dust particles in a bag filter collect on the fabric, forming a dust cake which decreases the pressure drop. The pressure drop increases as the cake thickness increases. It is important to monitor the pressure drop to ensure that the bag filter is not becoming plugged.

Penetration through the bag material

If the operating parameters (air volume and dust content) and the bag construction are chosen properly, the bag filter will provide a reliable service. The bag filter will be free of leaks, and the dust collected will be removed efficiently and safely. However, if the bag construction is not properly designed, the bag filter will be prone to leaks.

Increased differential pressure drop

Differential pressure drop is the difference between the pressure drop across the clean bag filter and the pressure drop across the bag filter with dust cake. The differential pressure drop should be monitored regularly to ensure that the bag filter is not plugged.

Penetrations through the bag material

If the bag filter is not properly designed, penetrations through the bag material may occur, leading to dust leaks. These penetrations can be caused by poor bag design, insufficient bag construction, or insufficient bag material.

Increased emissions

Increased emissions of dust from the bag filters and dust cake bags can be controlled by improving the bag filter design and operation.

Penetrations through the bag material

If the bag filter is not properly designed, penetrations through the bag material may occur, leading to dust leaks. These penetrations can be caused by poor bag design, insufficient bag construction, or insufficient bag material.

Penetrations through the bag material

If the bag filter is not properly designed, penetrations through the bag material may occur, leading to dust leaks. These penetrations can be caused by poor bag design, insufficient bag construction, or insufficient bag material.

Penetrations through the bag material

If the bag filter is not properly designed, penetrations through the bag material may occur, leading to dust leaks. These penetrations can be caused by poor bag design, insufficient bag construction, or insufficient bag material.

Penetrations through the bag material

If the bag filter is not properly designed, penetrations through the bag material may occur, leading to dust leaks. These penetrations can be caused by poor bag design, insufficient bag construction, or insufficient bag material.

Penetrations through the bag material

If the bag filter is not properly designed, penetrations through the bag material may occur, leading to dust leaks. These penetrations can be caused by poor bag design, insufficient bag construction, or insufficient bag material.

Penetrations through the bag material

If the bag filter is not properly designed, penetrations through the bag material may occur, leading to dust leaks. These penetrations can be caused by poor bag design, insufficient bag construction, or insufficient bag material.
Flexibility for changing operating conditions:

- When changing from direct operation at temperatures up to 240 °C to compound mode at 140 °C the dust load is increased 10–15 times! Even at dust loads above 500 g/Nm³ P84 material ensures maximum efficiency and keeps emission levels far beyond environmental standards. No CO shut-downs.

Secondary fuels require chemical resistant filter material:

- The use of alternative fuels can change the flue gas composition dramatically. P84 material can be used within a wide pH range of 2–12 making it the preferred material when flue gas conditions vary due to different fuels.

In summary P84 material offers:

- good chemical and mechanical stability
- high temperature resistance up to 260 °C
- suitability for high a/c ratios up to 1,5 m/min
- superior filtration efficiency

More successful installations under www.P84.com

Evonik Fibres GmbH
Werkstraße 3
4860 Lenzing
Austria

PHONE +43 7672 701-2891
FAX +43 7672 96862

USA Office
Hopedale, Tammie Road, P.O.Box 128 / II
MA 01747

PHONE +1 508 478-2414
FAX +1 508 478-3843

Cement plant Poland
Cement plant France
Cement plant Austria

Convincing facts - P84 references
Collection efficiency for cement plants.

Evonik Fibre Power, to create.
Flexibility for changing operating conditions:

When changing from direct operation at temperatures up to 240 °C to compound mode at 140 °C the dust load is increased 10 - 15 times! Even at dust loads above 500 g/Nm³ P84 material ensures maximum efficiency and keeps emission levels far beyond environmental standards. No CO shut-downs.

Secondary fuels require chemical resistant filter material:

The use of alternative fuels can change the flue gas composition dramatically. P84 material can be used within a wide pH range of 2 - 12 making it the preferred material when flue gas conditions vary due to different fuels.

In summary P84 material offers:

• good chemical and mechanical stability
• high temperature resistance up to 260 °C
• suitability for high a/c ratios up to 1,5 m/min
• superior filtration efficiency

More successful installations under www.P84.com

Evonik Fibres GmbH
Werkstraße 3
4860 Lenzing
Austria
PHONE +43 7672 701-2891
FAX +43 7672 96862
www.P84.com
USA Office
Hopedale, Tammie Road, P.O.Box 128 / II
MA 01747
USA
PHONE +1 508 478-2414
FAX +1 508 478-3843

Convincing facts - P84 references
Collection efficiency for cement plants.

Evonik Fibre GmbH
Technische Universität Graz
Austria
PHONE +43 316 871-3063
FAX +43 316 871-4742
www.P84.com

TROUBLESHOOTING
FREQUENT BAGHOUSE OPERATING PROBLEMS P84

Introduction

Bag filters, contrary to electronic precipitators (ESP), consist of ‘insoluble’ components, the filter bags. Therefore, different parameters are of relevance for baghouse operation when compared with ESP operation.

The filter bag performance describes the filtration efficiency and pressure drop of the baghouse. The overall filtration efficiency is influenced by the precollector, and is determined by the efficiency of the bag material. Any increase in filtration efficiency is less influenced by operating conditions than that of an ESP. Furthermore, ESP’s operation is more expensive and less reliable. The cost of an ESP is more influenced by the emission requirements than by bag selection. The bag material is much lower in cost than the ESP and the bag life is also determined by the precollector efficiency. The bag efficiency is one of the crucial factors in the operation of baghouses. Therefore, the bag material effectively influences the overall baghouse efficiency and operating costs.

The following parameters play a major role in determining the filtration efficiency:

- Temperature fluctuations above the precollector limit of the bag material.
- Chemical degradation conditions, mainly hydrolysis attack.
- Mechanical damage originate from the relatively hard cement dust, locally high gas velocities or as a result of penetration into the filter material.

This classification is useful to take measures to prevent filter damage, but not to identify the root cause of the filter damage. The separator experiences two different types of critical problems:

- High pressure drop of the filter unit.
- Increased dust emissions.

Evonik, Power to create.